

20. Zulieferforum - Arbeitsgemeinschaft Zulieferindustrie

Status und Perspektiven automobiler Antriebe

Stuttgart, 28. Januar 2016

Dr.-Ing. Dipl.-Wirt. Ing. Christian-Simon **Ernst**

#150 · 15CE0095.pptx Folie Nr. 1 28.01.2016 © fka 2016 · All rights reserved

Umweltschutz, Urbanisierung und kultureller Wandel prägen die Forschungsthemen der nächsten Jahre ...

Megatrends für die Automobilindustrie Megatrends Kultureller Wandel Umweltschutz **Urbanisierung Treiber** Kunde / Markt Gesetzgebung Ständiger Austausch Forschungsthemen Effizienz **Sicherheit** Vernetzung

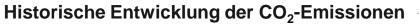
Ausblick

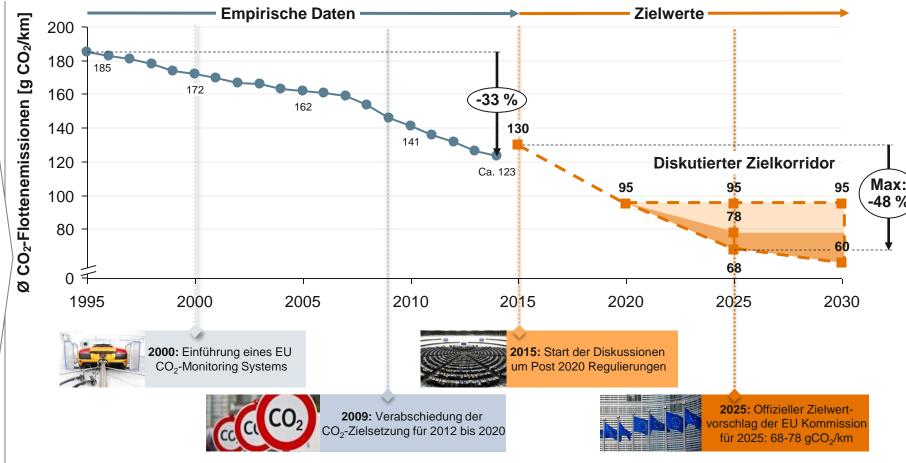
- Die Zielsetzung für zukünftige Generationen von Kraftfahrzeugen lautet EFFIZIENT, SICHER und VERNETZT.
- Leitfragen für das Forschungsfeld Effizienz:
 - Wie lautet die genaue Zielsetzung für die Branche?
 - Was sind mögliche Lösungsansätze und Wege die eingeschlagen werden?
 - Was sind die verbleibenden Herausforderungen?
 - Welche Implikationen leiten sich hieraus auf die aktuelle Ausrichtung der Automobilindustrie ab?

#150 · 15CE0095.pptx Folie Nr. 3 28.01.2016 © fka 2016 · All rights reserved

- Megatrends der Automobilindustrie
- Entwicklungsziel Effizienz
- Generelle technologische Handlungsoptionen
- Perspektive 2025: Wie verändert sich der Antrieb der Zukunft?
- Implikationen f
 ür die Zulieferindustrie
- Zusammenfassung

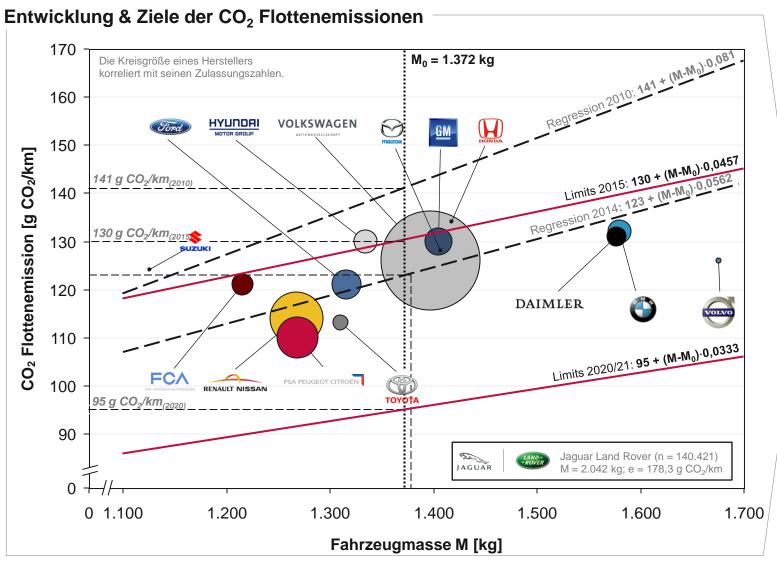
Effizienz – Der Ø Kraftstoffverbrauch von neuen Pkw wurde in den vergangenen Jahren signifikant optimiert ...





EU-Effizienzziele

- Bis zum Jahr 2050 sollen die anthropogenen Treibhausgasemissionen in der EU um 80 – 95 % im Vergleich zu 1990 reduziert werden.
- Im Verkehrssektor (Pkw, Busse und Lkw) sollen bis dahin mind.
 60 % Reduzierung erzielt werden.
- Im globalen Vergleich sind die EU Effizienzziele als die herausforderndsten anzusehen.
- Die EU-Gesetzgebung bleibt dabei "technologieneutral" und eröffnet somit grundsätzlich unterschiedliche Ansätze zur Zielerreichung.



- Das Weißbuch der europäischen Union sieht eine langfristige Decarbonisierung des Verkehrssektors vor. Hierzu werden mittelfristig CO₂-Zielwerte für die neuen Fahrzeugflotten je Hersteller eingeführt und sukzessive verschärft.
- Im Jahr 2013 konnte im EU Durchschnitt bereits die Zielwertvorgabe für das Jahr 2015 erfüllt werden.

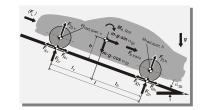
Effizienz – Die meisten Fahrzeughersteller sind auf Zielkurs für 2020, ausruhen kann sich jedoch keiner ...

Resultierende CO₂ Minderungsanforderung

- Fast alle OEM haben zwischen 2010 und 2015 eine signifikante CO₂ Reduzierung erreicht. Die 130 gCO₂/km wurden von fast allen OEM frühzeitig erreicht.
- Stärkster Fortschritt: JLR, Daimler und Renault.
- Geringster Fortschritt: FCA, Hyundai und GM.

	∆ 2010-2014		∆ 2014-Target 2020	
	[gCO ₂ /km]	[%]	[gCO ₂ /km]	[%]
JLR	-41,3	-18,8 %	-61,0	-34,2 %
Honda	-13,1	-8,9 %	-37,3	-27,9 %
Suzuki	-12,9	-9,4 %	-37,0	-29,9 %
Hyundai	-7,7	-5,6 %	-36,7	-28,1 %
GM	-8,8	-6,3 %	-34,4	-26,3 %
Mazda	-21,3	-14,3 %	-31,8	-24,9 %
FCA (Fiat)	-6,7	-5,3 %	-31,6	-26,1 %
VW	-17,4	-12,2 %	-29,9	-23,8 %
BMW	-16,1	-10,9 %	-29,6	-22,5 %
Daimler	-29,2	-18,2 %	-29,6	-22,5 %
Ford	-15,1	-11,1 %	-28,3	-23,3 %
Renault	-24,6	-17,7 %	-22,3	-19,6 %
Volvo	-30,9	-19,7 %	-20,9	-16,6 %
Toyota	-16,6	-12,8 %	-20,1	-17,8 %
PSA	-21,1	-16,1 %	-18,5	-16,8 %
EU Market	-16,8	-12,0 %	-26,6	-21,8 %

- Megatrends der Automobilindustrie
- Entwicklungsziel Effizienz
- Generelle technologische Handlungsoptionen
- Perspektive 2025: Wie verändert sich der Antrieb der Zukunft?
- Implikationen f
 ür die Zulieferindustrie
- Zusammenfassung


Technologie – Es gibt eine Vielfalt an technischen Stellhebeln zur Reduktion der CO₂-Lebenszyklus-Emissionen ...

Fahrzeugentwicklung

- Effizienzsteigerung der Energiewandlung
 - Motorische Maßnahmen
 - Elektrifizierung des Antriebsstrang
 - Energiewandler (Getriebe)
 - Optimierung Nebenverbraucher
- Reduzierung des Fahrwiderstands
 - Rollwiderstandsreduzierung
 - Aerodynamische Optimierung
 - Leichtbau



Fahrzeugproduktion

- Werkstoffe:
 - Stahl, Aluminium, Kunststoffe, Verbundwerkstoffe, ...
- Fertigungsverfahren:
 - Urformen, Umformen, Härten, Lackieren, Montage, ...
- Fügeverfahren
 - Zusammensetzen, Pressen, Schweißen, Kleben, Schrauben, Nieten, ...
- Standort:
 - Europa, Amerika, Asien, ...
- Transportwege
 - Rohmaterial, Halbzeug, Komponente, System, Gesamtfahrzeug
- Wiederverwendbarkeit / Recycling
 - Zerlegbarkeit, Materialtrennung

Fahrzeugnutzung

- Fahrer, z.B.:
 - Fahrverhalten (Sportlich Zurückhaltend)
 - Fahrerausbildung (Gut Schlecht)
- Umfeldfaktoren, z.B.:
 - Temperaturen
 - Urbanes vs. ländliches Gebiet
- Klimaanlagen (nur relevant für USA)
 - Innovative Kältemittel: z.B. R1234yf oder CO₂
 - Leckagerate und Effizienz der Steuerung
- "Ökoinnovationen" (USA und Europa)

In Normzyklus berücksichtigt

Nicht relevant

Teilweise anrechenbar

Für die EU CO₂-Gesetzgebung zum Fahrzeugflottenverbrauch ist nur ein Teil der CO₂-Emissionen eines Kfz-Lebenszyklus relevant. Nur der NEDC (zukünftig WLTP) Normverbrauch ist hier relevant.

#150 · 15CE0095.pptx Folie Nr. 8 28.01.2016 © fka 2016 · All rights reserved

- Megatrends der Automobilindustrie
- Entwicklungsziel Effizienz
- Generelle technologische Handlungsoptionen
- Perspektive 2025: Wie verändert sich der Antrieb der Zukunft?
- Implikationen f
 ür die Zulieferindustrie
- Zusammenfassung

Perspektive Antriebsstrang 2025 – Durch Downsizing und Elektrifizierung lassen sich Volumenantriebe deutlich optimieren ...

W. I.	2005	2015	2025		
Verbrennungsmotor	Opel Astra G	VW Golf VII	Perspektive Benziner	Trends / Treiber	
Motor	Saugrohreinspritzung	Benzindirekteinspritzung	Benzindirekteinspritzung	 Durch Downsizing wird der Hubraum 	
Bauart	Reihen 4-Zylinder	Reihen 4-Zylinder	Reihen 3-Zylinder	bzw. die Zylinderzahl reduziert. Zur Leistungskompensation wird der Antrieb	
Hubraum	1,8 l	1,4	0,9 - 1,0		
Aufladung	Keine	Turbo	Bi-Turbo oder eTurbo	weiter aufgeladen.	
Elektrifizierung	Keine	Start-Stopp	48V-Hybrid	 Die Elektrifizierung des Antriebsstrangs optimiert Systemleistung und Drehmomentverlauf. 	
Leistung	92 kW	110 kW	Im elektrifizierten System		
Drehmoment	170 Nm	250 Nm	gesteigert		
Antriebsstrang					
Getriebe	5-Gang Manuell	6-Gang Manuell	6-Gang Automatisiert	 Automatisierte Getriebe bieten CO₂- 	
Antrieb	Front	Front	Front	Potenziale und Komfortsteigerung.	
Emissionen					
CO ₂ -Emission [NEDC]	187 – 211 g CO ₂ /km	116 – 120 g CO ₂ /km	< 95 g CO ₂ /km	 Anforderungen an die Flotteneffizienz 	
Verbrauch [NEDC]	8,1 – 9,1 l/100km	4,7 – 5,2 l/100km	< 4 l/100km	wirken sich auf jedes Fahrzeugmodell aus.	
Schadstoff-Emission	Euro 4	Euro 6	Euro 6+ und RDE	 Verschärfte Grenzwerte für Schadstoffe 	
Abgasnachbehandlung	Katalysator	Katalysator	Katalysator & Partikelfilter	erfordern mehr Abgasnachbehandlung.	

Perspektive Antriebsstrang 2025 – Viele kleine technologische Bausteine tragen zur Optimierung des Verbrennungsmotors bei ...

Trends / Treiber

Exemplarische Technologien: Verbrennungsmotor

Ladungswechsel Vollvariabler Ventiltrieb

Ermöglicht:

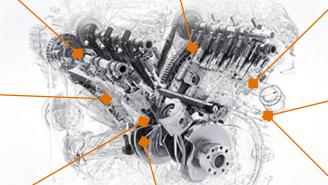
- Freie Steuerzeiten
- Freier Ventilhub
- InnovativeBrennverfahren
- Zylinderabschaltung

Reibungsreduktion DLC-Beschichtung

- Reibungsreduzierung an Bauteilen, z.B.:
- Kolbenringe
- Tassenstößel
- Nockenwelle
- Zylinder-Liner

Thermomanagement

Abgaskrümmer-Turbinenmodul (Diesel)



- Abgastemperaturen von Dieselmotoren sinken. Daher neue Bauformen.
- Reduzierung der Wärmeverluste bis zum Katalysator.

Brennverfahren Schichtladebetrieb (Otto)

- Zündfähiges Gemisch an der Zündkerze; sonst verschiedenste Mischungsverhältnisse
- Insb. Optimierung des Verbrauchs im Teillastbetrieb

Aufladung

- Auf Otto Drehzahlband angepasste VTG Lader:

 Höhere
 - Honere Temperaturen
 - Optimiertes Ansprechverhalten
 - Verbesserte Effizienz

*Leichtbau*Schmiedekolben

Leichtere und hochfeste Kolben:

- Höhere Festigkeit
- Ermöglicht höhere spezifische Leistung
- Gewichtsreduktion

Leichtbau

Optimierte Kurbelwelle

- Werkstoffoptimierung: Hochfester Stahl
- Geometrische Optimierung gemäß des Biegemomentenverlaufs Effizienzsteigerung

durch reduzierte Trägheit

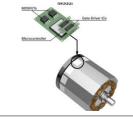
Aufladung

Elektrisch unterstützte Aufladung

- E-Turbo / E-Booster
- Verbesserung ...
- des Ansprechverhalten
- der Elastizität
- des "Turbolochs"

Perspektive Antriebsstrang 2025 – Viele kleine technologische Bausteine tragen zur Optimierung des Antriebsstrang bei ...

Trends / Treiber



Exemplarische Technologien: Antriebsstrang

Elektrifizierung

Integrierte Leistungselektronik

- Besserer Wirkungsgrad
- Kompaktere Bauform
- Reduktion der Produktionskosten

Elektrifizierung

Lithium-Luft-Akkumulator

- Energiedichte um Faktor
 10 20 höher als Li-Ion
- Größere Reichweite
- Potential für niedrigere Batteriesystemkosten

Abgasnachbehandlung

SCR-Technologie

- Effiziente Reduzierung von NOx
- Optimierte Abstimmung von Motorsteuerung und Abgasnachbehandlung
- Geringerer AdBlue Verbrauch

Innovation / Energieeffizienz

Vorausschauendes Energiemanagement

- Nutzung von topographischen Navigationsdaten
- Optimierung der Betriebsstrategie an erwartete Strecke

Innovation / Fahrdynamik

Torque-Vectoring-Differential

- Aktive Drehmomentverteilung
- Höhere Kurvengeschwindigkeit
- Steigerung der Fahrsicherheit und des Fahrerlebnisses

Reibungsreduktion

Plasmabeschichtete Wälzlager

- Reibungsreduktion um bis zu 50 %
- Verminderter Verschleiß

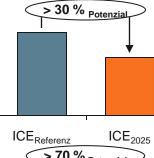
Leichtbau

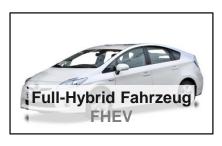
Geschmiedete Hohlwellen

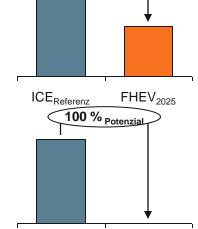
- Massenreduktion im Bereich der neutralen Ader
- Optimierter Werkstoff
- Verringerung des Trägheitsmoments

Leichtbau

CFK-Felgen




- Gewicht halbiert ggü. Aluminium Felge gleicher Größe
- Reduktion ungefederter Massen
- Verringerung des Trägheitsmoments



- Für die Antriebseffizienz besteht weiterhin ein hohes Potenzial, auch beim konventionellen Verbrennungsmotor.
- Aus technologischer Perspektive lässt sich festhalten, dass rein theoretisch jeder beliebige CO₂-Wert möglich wäre.

ICE_{Referenz}

> 40 % Potenzial

ICE_{Referenz} PHEV₂₀₂₅

Batterieelektrisches Fahrzeug BEV

Datenquelle: Studie: "CO₂-Emissionsreduktion bei Pkw und LNF nach 2020" im Auftrag des Bundesministerium für Wirtschaft und Technologie, ika RWTH Aachen, 2014

- Aus Endkunden-Perspektive sind jedoch nur ausgewählte Technologien wirtschaftlich.
- Beispielhafte Einflussfaktoren für die Wirtschaftlichkeit:

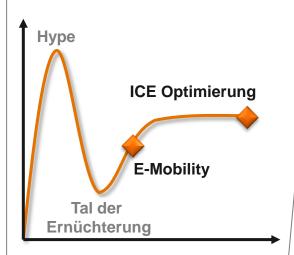
BEV₂₀₂₅

Herausforderungen/Ausblick

- Die Kernherausforderung ist das Kosten/Nutzen-Verhältnis aller Technologien.
- Weltweit führen unterschiedliche Prüfbedingungen zu anderen Bewertungen des Technologienutzens.
- In der Breite der Masse werden zunächst konventionelle Antriebsstrangvarianten weiter optimiert.
- Darüber hinaus erfolgt eine Diversifizierung der Antriebsvarianten für alternative Kraftstoffe (CNG, LPG, E85 oder zukünftig Wasserstoff).
- Langfristig erfolgt ein Ausbau des Angebots an elektrifizierten Antriebsstrangvarianten.
- Technologisch sind fast alle CO₂-Zielwerte darstellbar, jedoch nicht wirtschaftlich.

DEM Perspektive

- Megatrends der Automobilindustrie
- Entwicklungsziel Effizienz
- Generelle technologische Handlungsoptionen
- Perspektive 2025: Wie verändert sich der Antrieb der Zukunft?
- Implikationen f
 ür die Zulieferindustrie
- Zusammenfassung


Industrie – Das Forschungsthema Effizienz definiert Chancen und Herausforderungen für die Branche ...

Zielsetzungen / Hype Cycle

- Bis zum Jahr 2050 sollen die anthropogenen Treibhausgasemissionen in der EU um 80 -**95** % im Vergleich zu 1990 reduziert werden.
- Mittelfristig müssen in Europa und den USA Kraftstoff - Effizienzziele eingehalten werden. Hierzu müssen Technologien in die Fahrzeuge eingebracht werden, um die CO₂-Emissionen zwischen 30 und 45 % zu senken.

Bewertungen

OEM

Perspektive

Start Up /

Perspektive

Chancen:

- Effizienz als Branchenmaßstab
- **Differenzierung** von anderen OEM
- Herausforderungen:
- Hoher Druck durch finanzielle Strafen
- Kundennachfrage für CO₂ arme Fahrzeuge generieren
- Preis-Leistungs-Verhältnis optimieren

Zulieferer **Perspektive**

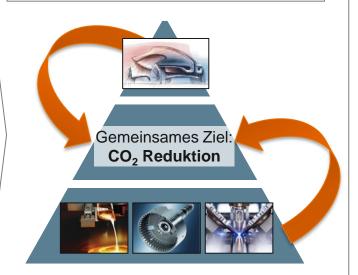
Chancen:

- Innovationspotenzial auf System- und Komponentenniveau
- Keine Strafen für Zulieferer, aber Druck durch **OFM**
- Herausforderungen:
- Sichtbarkeit auch von kleineren Maßnahmen
- Preis-Leistungs-Verhältnis aller Maßnahmen optimieren

Branchenfremde

Chancen:

- in speziellen Technologie- / Softwareentwicklungen, z.B.:
 - Beschichtungen
 - Zellchemie


Herausforderungen:

Markteintrittsbarrieren, z.B. typische Anforderungen der Branche, Großvolumina

Innovationsansatz

Fahrzeughersteller

- Gesamtfahrzeugkonzepte
- Fokus: Antriebssysteme
- Top-Down Ansatz

Zulieferer

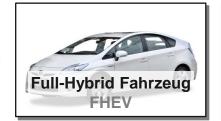
- Komponenten & Technologie Know-How
- Fokus: Antriebsstrangkomponenten
- Bottom-Up Ansatz

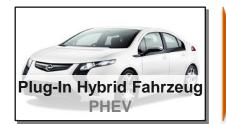
- Megatrends der Automobilindustrie
- Entwicklungsziel Effizienz
- Generelle technologische Handlungsoptionen
- Perspektive 2025: Wie verändert sich der Antrieb der Zukunft?
- Implikationen f
 ür die Zulieferindustrie
- Zusammenfassung

Zusammenfassung

Zusammenfassung

Die Megatrends "Umweltschutz", "Urbanisierung" und "kultureller Wandel" führen zu veränderten Zielsetzungen für die Fahrzeuge der Zukunft.


Das Forschungsfeld Effizienz leitet Veränderungen in der Branche ein. Die EU verfolgt das Ziel, die durchschnittlichen CO₂Emissionen von neuen Kraftfahrzeugen signifikant zu reduzieren


Ziel 2015: 130 g CO₂/km_{NEDC} Ziel 2020/21: 95 g CO₂/km_{NEDC} Zielvorschläge 2025/30: 78 - 60 g CO₂/km_{NEDC}

Technologisch ist dies mit einer Reihe von Maßnahmen (konv. Optimierung bis batterieelektrische Fahrzeuge) möglich.

- Eine wichtige Rolle spielen dabei die Innovationen der Zulieferindustrie, so dass die Zielsetzungen kosteneffizient umsetzbar werden.
- Statt einer großen technischen Veränderung werden zukünftig sehr viele kleine Veränderungen wichtig werden.
- Die größte Herausforderung liegt jedoch in der wirtschaftlichen Darstellung der neuen Technologien für den Endkunden.

Herzlichen Dank für Ihre Aufmerksamkeit!

Kontakt

Dr.-Ing. Dipl.-Wirt. Ing. Christian-Simon Ernst

fka Forschungsgesellschaft Kraftfahrwesen mbH Aachen Steinbachstraße 7 52074 Aachen

Telefon +49 241 88 61116 Fax +49 241 88 61110

E-Mail ernst@fka.de Internet www.fka.de

