

Additive Manufacturing– Individualisierung und Komplexität als Treiber für neue Technologien in der Zulieferindustrie

Stuttgart, 28 Januar 2016

Who we are...

Aachen Center for Additive Manufacturing An Initiative at the RWTH Aachen Campus

Affiliated partners:

Seite 4

What we see...

Additive Manufacturing

A Manufacturing Technology with Medial Hype

Source: MakerBot, Engineering.com, Forbes, Carbon Anchenterwarde Business Manager, Science, The New York Times, Wired, The Economist FOR ADDITIVE MANUFACTURING

ILT **RWTH Aachen Campus** Seite 5

Status-Quo Aerospace as Pioneer in AM Batch production

Fuel Nozzle (GE)

■ Assembly (conv.): 20

■ Weight: -25%

Batch production with SLM

■ Batch size (2018): 40.000

Quelle: www.industrial-lasers.com; 27.01.2016)

Bracket (Airbus)

■ Weight: -30%

■ Raw material: -90%

Quelle: Airbus, (http://www.airbus.com, 27.01.2016)

Status quo in the Automotive Industry:

AM used for prototyping

Challenges for Additive Manufacturing

DESIGN 1

New CAD Tools

New way of
thinking

PROCESSES 2

Optimization of processes
Investigation of new processes

PROCESS CHAINS

Effective and efficient combination of processes

BUSINESS INNOVATION

Strategic decisions New business models

What we can...

Horizontal and vertical process chain

Design Expertise

■ **Product:** The functionality needs to be translated into a design addressing the geometry and the material properties.

Digital (substitutional) Material DSM

Process and System Expertise

System Requirement: The production system creates and optimizes the product.

Multiple Scan Field

Skin-Core Principle

Multi Spot Array

New SLM Machine Concept at ILT - Multi Spot Array

Conventional SLM

New Multispot Concept

New SLM Machine Concept at ILT - Multi Spot Array

Example Wheel Carrier In Cooperation with the BMW Group

Example Wheel Carrier In Cooperation with the BMW Group

Machine Development

Reference Tests

Process Development

AM of Reference Part

Metrology

Example Wheel Carrier In Cooperation with the BMW Group

Example Highspeed Laser Metal Deposition

Ultra-high-speed LMD

Example Highspeed Laser Metal Deposition

Process and System Expertise Example Highspeed Laser Metal Deposition

High-Speed LMD vs. Conventional LMD

Unconventional Material Pairings

Seite 22

Cross-section

Results

- 1:1 wt.-% | WC : IN625
- Dilution < 1 %
- Single layer thickness approx. 60 μm

From Prototypes....

From Prototype...to Products

Thank You very much for Your Attention!

Seite 25

Aachen Center for Additive Manufacturing &

Fraunhofer-Institute for Laser Technology

Dr. -Ing. Johannes Witzel

Steinbachstraße 15 52074 Aachen, Germany

www.acam-aachen.de www.ilt.fraunhofer.de

∑ j.witzel@acam-aachen.de

+49 241 8906-8686

